铁木辛柯梁理论

铁木辛柯梁理论

准静态铁木辛柯梁

编辑

铁木辛柯梁的变形。

θ

x

=

φ

(

x

)

{\displaystyle \theta _{x}=\varphi (x)}

不等于

d

w

/

d

x

{\displaystyle dw/dx}

在静力学中铁木辛柯梁理论没有轴向影响,假定梁的位移服从于

u

x

(

x

,

y

,

z

)

=

z

φ

(

x

)

;

u

y

(

x

,

y

,

z

)

=

0

;

u

z

(

x

,

y

)

=

w

(

x

)

{\displaystyle u_{x}(x,y,z)=-z~\varphi (x)~;~~u_{y}(x,y,z)=0~;~~u_{z}(x,y)=w(x)}

式中

(

x

,

y

,

z

)

{\displaystyle (x,y,z)}

是梁上一点的坐标,

u

x

,

u

y

,

u

z

{\displaystyle u_{x},u_{y},u_{z}}

是位移矢量的三维坐标分量,

φ

{\displaystyle \varphi }

是对于梁的中性面的法向转角,

w

{\displaystyle w}

是中性面的在

z

{\displaystyle z}

方向的位移。

控制方程是以下常微分方程的解耦系统:

d

2

d

x

2

(

E

I

d

φ

d

x

)

=

q

(

x

,

t

)

d

w

d

x

=

φ

1

κ

A

G

d

d

x

(

E

I

d

φ

d

x

)

.

{\displaystyle {\begin{aligned}&{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right)=q(x,t)\\&{\frac {\mathrm {d} w}{\mathrm {d} x}}=\varphi -{\frac {1}{\kappa AG}}{\frac {\mathrm {d} }{\mathrm {d} x}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right).\end{aligned}}}

静态条件下的铁木辛柯梁理论,若在以下條件成立時,等同于欧拉-伯努利梁理论

E

I

κ

L

2

A

G

1

{\displaystyle {\frac {EI}{\kappa L^{2}AG}}\ll 1}

此時,可忽略上面控制方程的最后一项,得到有效的近似,式中

L

{\displaystyle L}

是梁的长度。

对于等截面均匀梁,合并以上两个方程,

E

I

d

4

w

d

x

4

=

q

(

x

)

E

I

κ

A

G

d

2

q

d

x

2

{\displaystyle EI~{\cfrac {\mathrm {d} ^{4}w}{\mathrm {d} x^{4}}}=q(x)-{\cfrac {EI}{\kappa AG}}~{\cfrac {\mathrm {d} ^{2}q}{\mathrm {d} x^{2}}}}

动态铁木辛柯梁

编辑

在铁木辛柯梁理论中若不考虑轴向影响,则给出梁的位移

u

x

(

x

,

y

,

z

,

t

)

=

z

φ

(

x

,

t

)

;

u

y

(

x

,

y

,

z

,

t

)

=

0

;

u

z

(

x

,

y

,

z

,

t

)

=

w

(

x

,

t

)

{\displaystyle u_{x}(x,y,z,t)=-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z,t)=w(x,t)}

式中

(

x

,

y

,

z

)

{\displaystyle (x,y,z)}

是梁内一点的坐标,

u

x

,

u

y

,

u

z

{\displaystyle u_{x},u_{y},u_{z}}

是位移矢量的三维坐标分量,

φ

{\displaystyle \varphi }

是对于梁的中性面的法向转角,

w

{\displaystyle w}

是中性面

z

{\displaystyle z}

方向的位移.

从以上假设,铁木辛柯梁,考虑到振动,要用线性耦合偏微分方程描述:[3]

ρ

A

2

w

t

2

q

(

x

,

t

)

=

x

[

κ

A

G

(

w

x

φ

)

]

{\displaystyle \rho A{\frac {\partial ^{2}w}{\partial t^{2}}}-q(x,t)={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]}

ρ

I

2

φ

t

2

=

x

(

E

I

φ

x

)

+

κ

A

G

(

w

x

φ

)

{\displaystyle \rho I{\frac {\partial ^{2}\varphi }{\partial t^{2}}}={\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}

其中因变量是梁的平移位移

w

(

x

,

t

)

{\displaystyle w(x,t)}

和转角位移

φ

(

x

,

t

)

{\displaystyle \varphi (x,t)}

。注意不同于欧拉-伯努利梁理论,转角位移是另一个变量而非挠度斜率的近似。此外,

ρ

{\displaystyle \rho }

是梁材料的密度(而非线密度);

A

{\displaystyle A}

是截面面积;

E

{\displaystyle E}

是弹性模量;

G

{\displaystyle G}

是剪切模量;

I

{\displaystyle I}

是轴惯性矩;

κ

{\displaystyle \kappa }

,称作铁木辛柯剪切系数,由形状确定,通常矩形截面

κ

=

5

/

6

{\displaystyle \kappa =5/6}

q

(

x

,

t

)

{\displaystyle q(x,t)}

是载荷分布(单位长度上的力);

m

:=

ρ

A

{\displaystyle m:=\rho A}

J

:=

ρ

I

{\displaystyle J:=\rho I}

这些参数不一定是常数。

对于各向同性的线弹性均匀等截面梁,以上两个方程可合并成[4][5]

E

I

4

w

x

4

+

m

2

w

t

2

(

J

+

E

I

m

k

A

G

)

4

w

x

2

t

2

+

m

J

k

A

G

4

w

t

4

=

q

(

x

,

t

)

+

J

k

A

G

2

q

t

2

E

I

k

A

G

2

q

x

2

{\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+m~{\cfrac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {EIm}{kAG}}\right){\cfrac {\partial ^{4}w}{\partial x^{2}~\partial t^{2}}}+{\cfrac {mJ}{kAG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q(x,t)+{\cfrac {J}{kAG}}~{\cfrac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{kAG}}~{\cfrac {\partial ^{2}q}{\partial x^{2}}}}

轴向影响

编辑

如果梁的位移由下式给出

u

x

(

x

,

y

,

z

,

t

)

=

u

0

(

x

,

t

)

z

φ

(

x

,

t

)

;

u

y

(

x

,

y

,

z

,

t

)

=

0

;

u

z

(

x

,

y

,

z

)

=

w

(

x

,

t

)

{\displaystyle u_{x}(x,y,z,t)=u_{0}(x,t)-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z)=w(x,t)}

其中

u

0

{\displaystyle u_{0}}

x

{\displaystyle x}

方向的附加位移,则铁木辛柯梁的控制方程成为

m

2

w

t

2

=

x

[

κ

A

G

(

w

x

φ

)

]

+

q

(

x

,

t

)

J

2

φ

t

2

=

N

(

x

,

t

)

w

x

+

x

(

E

I

φ

x

)

+

κ

A

G

(

w

x

φ

)

{\displaystyle {\begin{aligned}m{\frac {\partial ^{2}w}{\partial t^{2}}}&={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)\\J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}&=N(x,t)~{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\end{aligned}}}

其中

J

=

ρ

I

{\displaystyle J=\rho I}

N

(

x

,

t

)

{\displaystyle N(x,t)}

是外加轴向力。任意外部轴向力的平衡依靠应力

N

x

x

(

x

,

t

)

=

h

h

σ

x

x

d

z

{\displaystyle N_{xx}(x,t)=\int _{-h}^{h}\sigma _{xx}~dz}

式中

σ

x

x

{\displaystyle \sigma _{xx}}

是轴向应力,梁的厚度设为

2

h

{\displaystyle 2h}

包含轴向力的梁方程合并为

E

I

4

w

x

4

+

N

2

w

x

2

+

m

2

w

t

2

(

J

+

m

E

I

κ

A

G

)

4

w

x

2

t

2

+

m

J

κ

A

G

4

w

t

4

=

q

+

J

κ

A

G

2

q

t

2

E

I

κ

A

G

2

q

x

2

{\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}}

阻尼

编辑

如果,除轴向力外,我们考虑与速度成正比的阻尼力,形如

η

(

x

)

w

t

{\displaystyle \eta (x)~{\cfrac {\partial w}{\partial t}}}

铁木辛柯梁的耦合控制方程成为

m

2

w

t

2

+

η

(

x

)

w

t

=

x

[

κ

A

G

(

w

x

φ

)

]

+

q

(

x

,

t

)

{\displaystyle m{\frac {\partial ^{2}w}{\partial t^{2}}}+\eta (x)~{\cfrac {\partial w}{\partial t}}={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)}

J

2

φ

t

2

=

N

w

x

+

x

(

E

I

φ

x

)

+

κ

A

G

(

w

x

φ

)

{\displaystyle J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}=N{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}

合并方程为

E

I

4

w

x

4

+

N

2

w

x

2

+

m

2

w

t

2

(

J

+

m

E

I

κ

A

G

)

4

w

x

2

t

2

+

m

J

κ

A

G

4

w

t

4

+

J

η

(

x

)

κ

A

G

3

w

t

3

E

I

κ

A

G

2

x

2

(

η

(

x

)

w

t

)

+

η

(

x

)

w

t

=

q

+

J

κ

A

G

2

q

t

2

E

I

κ

A

G

2

q

x

2

{\displaystyle {\begin{aligned}EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}&+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}+{\cfrac {J\eta (x)}{\kappa AG}}~{\cfrac {\partial ^{3}w}{\partial t^{3}}}\\&-{\cfrac {EI}{\kappa AG}}~{\cfrac {\partial ^{2}}{\partial x^{2}}}\left(\eta (x){\cfrac {\partial w}{\partial t}}\right)+\eta (x){\cfrac {\partial w}{\partial t}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}\end{aligned}}}

相关推荐

亚洲365bet日博 没有打蛋器怎么将蛋清打发,用矿泉水瓶做个简易打蛋器
365bet体育在线世界杯 公司介绍

公司介绍

📅 07-11 👁️ 2190
365bet体育在线世界杯 克洛泽2006年世界杯经典头球破门绝杀阿根廷 梅西错失机会